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Abstract—Designing secure software systems is a non-trivial
task as data on uncommon attacks is limited, costs are difficult
to estimate, and technology and tools are continually changing.
Consequently, a great deal of expertise is required to assess the se-
curity risks posed to a proposed system in its design stage. In this
research we demonstrate how Evolutionary Algorithms (EAs) and
Simulated Annealing (SA) can be used with Ordered Weighted
Average (OWA) operators to provide a suitable aggregation tool
for combining experts’ opinions of individual components of an
specific technical attack to produce an overall rating that can be
used to rank attacks in order of salience. A set of thirty nine
cyber security experts took part in an exercise in which they
independently assessed a realistic system scenario. We show that
using EAs and SA, OWA operators can be tuned to produce
aggregations that are more stable when applied to a group of
experts’ ratings than those produced by the arithmetic mean,
and that the difference between the solutions found by each of
the algorithms is minimal. However, EAs do prove to be a quicker
method of search when an equivalent number of evaluations is
performed by each method.

Index Terms—Ordered Weighted Average, Evolutionary Algo-
rithms, Simulated Annealing, Cyber Security, Expert Decision
Making

I. INTRODUCTION

Today, an ever-growing number of sensitive transactions of
data take place on-line (e.g., e-government, internet banking
and e-commerce), and cyber crime has become prevalent.
One of the consequences of this is that the cyber security
of information systems has become an increasing concern.
Assessing the level of risk posed by specific events is an area
of ongoing interest for most (if not all) organisations, leading
to a requirement for scientific methods of validating the cyber
security of proposed software systems in their design stage.

Typically, the subjective opinions of cyber security experts
are used to verify and validate software systems; this is often
the only way to make such assessment. However, it is a lengthy
task, and in many cases access to experienced cyber security
professionals capable of carrying out such detailed assessment
is limited.

This work was part funded by CESG - the UK Government’s National
Technical Authority for Information Assurance (IA) and RCUK’s Horizon
Digital Economy Research Hub grant, EP/G065802/1.

In this research we use two different types of survey to elicit
the opinions of a set of thirty nine highly experienced expert
practitioners including system and software architects, security
consultants, penetration testers, vulnerability researchers and
specialist systems evaluators. The first involves ranking a
series of technical attacks on a system in order of how difficult
they are to carry out undetected by the system or its operators.
The second requires experts to rate components of attacks
in terms of aspects which are thought to contribute to their
overall difficulty. In practice, a system is only as secure as
its weakest element, i.e., the easiest way in. Identifying which
are the weakest aspects of a system, i.e., the easiest ways of
attacking it, is thus a highly relevant component of system
security assessment, though obviously it does not provide all
of the answers.

Using this data we demonstrate how technical attack rank-
ings can be derived from the component ratings through
aggregation, and compare them with the actual rankings
provided by the experts. This is particularly useful in real
world assessment, as the method provides the potential for
highlighting the most salient attacks for a new system using
a database of pre-rated components, reducing the burden on
expert resources.

Aggregation is achieved using an Ordered Weighted Aver-
age (OWA) operator [1]. This allows us to attribute weight
based upon the difficulty of compromising or bypassing com-
ponents, an important aspect of assessment raised by some of
the technical experts involved. Choosing OWA weights is not
a trivial task, as the solution space is extremely large. In this
study we have chosen to use Simulated Annealing (SA) and
Evolutionary Algorithms (EAs) to discover suitable weights,
as these methods allow us to search a very large solution space,
while evaluating only a small fraction of the possible solutions.

The paper is structured as follows: Section II provides an
overview of the problem of validating the security of software
systems, OWA operators, SA, and EAs. Section III describes
the decision making exercise conducted with the cyber security
technical experts, and Section IV examines the process of
OWA aggregation and the implementation of SA and EAs.
Sections V and VI provide the results of the analysis and a
discussion, and finally, Section VII considers the conclusions
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that can be drawn and future work.

II. BACKGROUND

This section provides an overview of the topics covered in
this paper.

A. Information System Security

The practice of carrying out regular risk assessments (for
information systems or otherwise) is a critical part of any
organisation’s measures for understanding the threats that
face their operation, and the actions that can be taken to
eliminate or ameliorate their effects. While risk assessments
in other areas have been commonplace for sometime, the
need to formally assess risks posed to information systems
and computer networks is a relatively recent occurrence for
many organisations. Part of the reason for this is the spread of
internet usage for an ever increasing number of everyday tasks
(e.g., e-government, e-commerce, e-mail, social networking,
e-banking and mobile telecommunications). As more of our
activities involve the internet, these same activities become
vulnerable to attack from malicious agents. Another factor is
easily available hardware and software required to compromise
software and devices, which can be found on the internet.
This reduces the need for technical knowledge, increasing the
accessibility of cyber-crime to non-experts.

In response to this, many new systems have their security
software, devices, architecture and practices assessed before
they are implemented in an attempt to prevent unacceptable
levels of vulnerability within a system. Naturally, any system
can be hacked by an individual or group who have the time,
resources and motivation, so the aim of information security
risk assessments is not to eliminate all risk (as this is futile),
but to assure that there is a proportional level of security in
view of the consequences of a successful attack.

B. Ordered Weighted Average

Discussions with a group of CESG experts generated a hy-
pothesis that the difficulty of a given attack may be determined
largely by the component of the attack with the maximum
difficulty in terms of bypassing/compromising it without being
noticed. However, it became apparent that the use of the
maximum or minimum operators in particular produced a lot
of equal scores when aggregating components to rate attacks,
making the resulting rankings much less meaningful. To help
overcome this difficulty an OWA operator [1] was selected
as the aggregation method. An OWA allows more weight to
be given to the most difficult components of an attack, while
still taking into account the other components when rating an
attack. This results in a significant reduction in the number of
ties obtained, leading to more meaningful rankings.

An OWA consists of a set of weights (that add up to 1),
and a set of objects. In this case the objects are component
ratings. The first step of the OWA is to sort the objects
(component ratings) into descending order, in this example the
most difficult component will be placed at the start of the list.
Then, each of the weights is multiplied by the corresponding

object, the first weight is multiplied by the first object and so
on. If the first weight is high (near to one), then the resultant
operator is close to a maximum. This weighting will then be
reflected in the overall score produced for an attack. In this
study we do not restrict the weightings; our search algorithms
may find solutions that do not corroborate our hypothesis.

OWAs are regularly used to combine sub-components of a
problem, producing an overall rating that can be used to aid
decision making. For example, in [2] OWA operators are used
to aggregate selection criteria in a personnel selection problem,
[3] details the use of an OWA to produce an overall indicator
of security of energy supply, in [4] performance indicators of
small water utilities are combined to produce an overall per-
formance assessment using an OWA operator, [5] describes the
use of a fuzzy OWA operator for rating information security
products in terms of reduction of information security risk,
and in [6] and [7] the authors use modified OWA operators
on a financial product selection problem and a football team
player selection problem respectively.

C. Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a popular method of
optimisation for problems with very large solution spaces. The
most widely used EA method, the Genetic Algorithm (GA)
(see [8] and [9]) is a heuristic search technique inspired by
evolutionary biology. Selection, crossover and mutation are
applied to a population of individuals representing solutions
in order to find a near-optimal solution. The GA is able to
find suitable solutions to a problem while evaluating a small
fraction of the solution space. For problems with an extremely
large solution space, this is essential. GA optimisation of OWA
weights has previously been demonstrated in [10].

D. Simulated Annealing

Like EAs, Simulated Annealing (SA) [11] is inspired by a
real-world phenomenon, in this case the process of heating
and cooling (annealing) of metals to reduce defects. An
initial solution is created, then a neighbouring solution is
selected and compared with it. The probability of the algorithm
accepting the neighbour as the current solution is based upon
a temperature value and the difference in quality between the
two solutions. The higher the temperature value, the more
likely it is that the algorithm will accept an inferior solution.
The process is then repeated using the selected solution as
a starting point. Over the course of a run the temperature is
gradually decreased, making inferior choices less likely. The
aim of this strategy is to avoid the search becoming stuck in
a local minima, a problem associated with simpler algorithms
such as hill climbing.

The authors are not aware of any work in the current
literature in which SA is applied to the problem of discovering
OWA weights.

III. DATA COLLECTION EXERCISE

A key part of this research is the elicitation of opinions from
a group of cyber security experts about how difficult it is to
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complete attacks and compromise/bypass components for a
given system design. The opinions are then used to determine
OWA weightings for mapping from component ratings to
attack ratings/rankings.

Our partnership with CESG gives us a level of access to
such experts that would be difficult to attain otherwise. As
the National Technical Authority for Information Security in
the UK, CESG has access to a cadre of specialist security
architects and other technical security experts, and can draw
on both public and private sector expertise.

A set of thirty nine security professionals from seven
groups took part in the main exercise, drawn from a mixture
of government and commercial backgrounds. The groups
included system and software architects, technical security
consultants, penetration testers, vulnerability researchers and
specialist systems evaluators. All participants have a high level
of expertise, with both breadth and depth of experience.

A scenario was created consisting of a system together with
various methods, vulnerabilities and attacks, realistic enough
to permit reasoned assessment, while being difficult to assess
fully, even by leading experts. The scenario was created by
a senior member of CESG technical staff and is designed to
be representative of a fairly mainstream government system.
The system involves a range of core services and back end
office facilities together with remote sites and mobile access.
Core systems hold the most sensitive business information,
with assets rated in terms of their value at Business Impact
Level 3 (BIL3) following the standard UK government scheme
[12]. This scale rates the impact of an event from BIL0 (no
consequences) to BIL6 (catastrophic).

The experts were given a presentation by the scenario
creator with details and diagrams of the scenario, attacks and
their components, and had the opportunity to ask questions
about the system. The experts were asked to assume that
the software/hardware and frequency of patching was of the
typical standard that they came across in their work with this
type of government system. They all regularly work with UK
government BIL3 systems, and so are aware of associated
security policy and how it is typically applied to such systems
in terms of component configuration, frequency of anti-virus
updates, etc.

The first part of the exercise consisted of the experts ranking
ten attacks in order of how difficult they thought they would
be to carry out without being detected. This activity was
conducted in examination-like conditions to ensure that there
were no outside influences on the experts opinions.

Following this, the second part of the exercise required
experts to answer a series of questions about each of the com-
ponents making up the attacks. The questions were devised in
collaboration with CESGs technical experts to determine what
the important factors are that contribute to the difficulty of
compromising/bypassing components and carrying out attacks.

A novel approach to capturing expert opinion and express-
ing subjective uncertainty was devised that allows participants
to make a detailed differentiation between the difficulty of
bypassing/compromising a component and their certainty.

Fig. 1. Interval Response where (a) is a Less Uncertain Response and (b)
is a More Uncertain Response

Experts gave their answers as an interval, on a scale of
0 to 100. This was done by drawing an ellipse as shown
in Figure 1, which shows two example answers, one more
uncertain than the other. The interval is produced using the
points where the ellipse intersects the scale. The width of the
interval denotes the uncertainty the expert has in their answer,
the wider the interval, the less certain the expert is. Using this
method, participants are able to impart information about their
uncertainty.

The experts were divided up, completing the component
questions in a number of separate rooms in exam conditions.
As there were thirty nine participants and twenty six distinct
components in the scenario, with up to eight questions per
component, this produced a substantial dataset of around six
thousand observations. We believe this scope of data collection
and quantity of data collected from highly experienced security
practitioners to be unprecedented.

IV. DATA ANALYSIS - METHODS

The analysis conducted involves the data collected regarding
the individual components, and potentially relating these to
particular attacks. As stated previously, the component rating
part of the exercise required experts to answer a series of
questions about the twenty six components that make up the
ten attacks that were ranked in the first part of the exercise. The
result of the exercise was a collection of intervals that describe
each experts opinion of a particular aspect of a particular
component.

For the analysis in this study, we have focused on the means
of the intervals given for one question: “Overall, how difficult
would it be for an attacker to [successfully bypass/compromise
the component]?” This question was designed to elicit one
overall difficulty rating for the component, while the other
questions focus on specific aspects of that difficulty. In future
work, the advantages offered by the interval representation
and the complete set of questions for each component will be
explored.

Each of the twenty six components belongs to one or more
of the ten attacks, Table I shows which components belong to
each attack. Note that some components are duplicated in a
single attack, this is because a particular attack may involve
bypassing/compromising the same type of component more
than once, for example, an attacker may have to compromise
multiple firewalls to reach a target.

Using this information, the ratings an expert gave for each
component can be used to produce a difficulty value for each
attack. In this study, we are using an OWA operator to compute
difficulty values for the ten attacks.

Table II shows the means of the intervals provided by one
expert in response to the ‘Overall’ question for each of the
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TABLE I
ATTACKS WITH CONSTITUENT COMPONENTS

Attack Components
1 2,3,1,4,5
2 6,7,6,8,4
3 9
4 10,11,4,5
5 12,13,2,3,14,15,4,5
6 16,16,17,4,5
7 6,18,4,5
8 19,20,21
9 22,23,24
10 25,26,1,4,5

components of attack 1 (2,3,1,4,5).

TABLE II
EXPERT’S ‘OVERALL’ INTERVAL MEANS FOR ATTACK 1

Component Interval Mean
1 25.00
2 40.00
3 20.50
4 40.00
5 70.00

The OWA can then be applied to this set of values
to produce an overall score for attack 1. For example, if
we wanted to choose an OWA operator that gives more
weight to the most difficult hop, our weights could be
w = 0.33, 0.27, 0.20, 0.13, 0.07. To apply these to the experts
interval means a = 25.00, 40.00, 20.50, 40.00, 70.00, we first
sort them by difficulty rating producing the following ordering:
o = 70.00, 40.00, 40.00, 25.00, 20.50. We can then compute
the OWA by multiplying each weight by the corresponding
element in the ordering as shown in (1), where n is equal
to the number of weights/components. In this case a value
of 46.59 is produced; the mean value is 39.10, showing that
this OWA operator has given more weight to higher values of
difficulty.

OWAw(a) =

n∑
i=1

wioi (1)

This procedure can be repeated for each of the attacks, using
a given OWA operator. The result is a set of difficulty values
for each of the attacks, that can be used to rank them from most
to least difficult. Finally, the derived ranking can be compared
with the actual ranking given by an expert to validate the OWA
operator in question. In these tests OWA operators are applied
to multiple experts (two groups of alternate experts, and the
overall group) to test their performance.

With the two search algorithms we have selected, we can use
the comparison of the derived ranking and the actual ranking
to rate the fitness of OWA operators.

A. Simulated Annealing

The SA algorithm is implemented as follows:
Solutions are represented using a vector of weights. The

maximum number of components in an attack is eight, there-
fore eight weights are used in solutions. For those attacks that

do not have eight components, their component ratings are
padded out with zeros so that there are eight. This avoids
the potential for attacks that have fewer components being
judged as being more difficult, purely because their weightings
are concentrated on fewer components. An attack with more
components should be more difficult than an equivalent attack
with fewer components.

The initial solution is created by generating eight random
points on a line from 0 to 1. The weights are the distances
between zero, each point and 1. This ensures that the weights
will add up to 1.

Fitness is determined by comparing each individual’s actual
attack ranking with the attack ranking derived from their
component ratings using an OWA. Spearman’s Rho is used
to rate the correlation between the rankings, and error is
calculated by subtracting each Spearman’s Rho value from 1.
The mean squared error over all individuals provides a metric
for assessing the performance of a particular set of weights.

Pertubation is achieved by selecting two weights from a
solution, increasing one by a small amount and decreasing the
other by the same amount. If either weighting becomes invalid
(> 1 or < 0) another two elements are selected. This method
ensures that the weights still add up to 1 after perturbation.

The temperature is decremented by a specified amount after
a given number of tries.

The algorithm terminates when the temperature reaches
zero.

B. Evolutionary Algorithm

For the EA, solution representation, initial population gen-
eration and fitness evaluation are achieved using the methods
described for SA. The mutation operator uses the perturbation
method from the SA algorithm, the remainder of the EA is
implemented as follows:

In parent selection, individuals are sorted by fitness and ran-
dom individuals are chosen from the population using absolute
values over a normal distribution forming a complementary
cumulative distribution. That is to say, it is more likely that
a lower numbered (and therefore fitter) individual will be
chosen, though it is possible for any individual to be chosen.

In Elitism the best individuals from each generation are
copied into the next generation. This ensures that the best
individual in a generation cannot be worse than the best in
the preceding generation.

A single point crossover is used that takes two parents and
creates a child consisting of the first half of the first parent,
and the second half of the second parent. To make sure that
the weights add up to 1, they are normalised. This allows us to
preserve the characteristics of each parent, while maintaining
a valid set of weights.

The algorithm terminates when a set number of generations
have elapsed.

V. DATA ANALYSIS - RESULTS

The next step is to conduct a series of tests with each search
algorithm. Initially, these experiments are used to determine
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TABLE IV
SA: TEST SET 1 - BEST RESULTS

Best Weights
Test Mean Sp. MSE 1 2 3 4 5 6 7 8

Even
10 - 11 0.6815 0.1454 0.89 0 0.04 0.01 0.01 0.03 0.01 0.01
12 - 16 0.6815 0.1454 0.88 0 0.04 0.01 0.01 0.03 0 0.03
Odd

12 0.5643 0.2583 0.78 0.01 0.14 0.05 0.01 0.01 0 0
All
12 - 16 0.6154 0.2105 0.95 0 0.03 0.01 0 0 0 0.01

TABLE V
SA: APPLICATION OF BEST WEIGHTS TO ALTERNATE GROUP

Weights
Test Mean Sp. MSE 1 2 3 4 5 6 7 8

Best ‘even’ weights applied to ‘odd’
10-11 0.5128 0.3147 0.89 0 0.04 0.01 0.01 0.03 0.01 0.01
12-16 0.5128 0.3147 0.88 0 0.04 0.01 0.01 0.03 0 0.03
Best ‘odd’ weights applied to ‘even’

12 0.5846 0.2533 0.78 0.01 0.14 0.05 0.01 0.01 0 0

TABLE III
SA: TEST SET 1

Test Temp. Dec.
1 1 1.0× 10−2

2 0.9 0.9× 10−2

3 0.8 0.8× 10−2

4 0.7 0.7× 10−2

5 0.6 0.6× 10−2

6 0.5 0.5× 10−2

7 0.4 0.4× 10−2

8 0.3 0.3× 10−2

9 0.2 0.2× 10−2

10 0.1 0.1× 10−2

11 0.05 0.5× 10−3

12 0.025 0.25× 10−3

13 0.01 0.1× 10−3

14 0.5× 10−2 0.5× 10−4

15 0.25× 10−2 0.25× 10−4

16 0.1× 10−2 0.1× 10−4

17 0.5× 10−3 0.5× 10−5

18 0.25× 10−3 0.25× 10−5

19 0.1× 10−3 0.1× 10−5

an appropriate configuration for each of the methods. Con-
figurations have been chosen to result in a similar number
of evaluations to avoid favouring any particular method or
configuration.

Experiments have been conducted on three groups of in-
dividuals: ‘odd’ (i.e., the 1st, 3rd, 5th,... individuals), ‘even’
(i.e., the 2nd, 4th, 6th,... individuals) and ‘all’ individuals. The
reason for this is that after tuning the weights with 50% of
the overall group, we can then test these weights to see how
they perform on unseen individuals in the remaining 50% of
the group. The group containing all individuals will give an
indication of the best that can be found using the selected
search algorithms for the entire group.

A. Simulated Annealing

In the first set of tests, a series of configurations are
experimented with, with the goal of discovering an ideal

configuration for further testing. Table III provides the config-
urations tested, and Table IV shows the best results for each
group. All of the tests were conducted for 625 tries at each
temperature with a random seed of one.

The results of the tests show that those starting with smaller
temperatures, and making smaller decrements produce OWA
operators that make the best mapping from component rating
to attack ranking. Within the tests for each group there isn’t a
great deal of variation in the quality of the OWAs produced.
The results plateau towards the end of the ‘Even’ and ‘All’
group tests, while a single configuration produces the best
results with the ‘Odd’ group. All of the best results show
a heavy bias towards the first and most difficult component,
giving weight to our hypothesis that these are the most
important when assessing the danger posed by specific attacks.

1) Alternate Group Weightings: Following this, the best
configurations for each set of tests were used to conduct further
tests. First, the best weightings found for the ‘even’ data set
were used on the ‘odd’ data set and vice versa. The purpose of
this test is to discover whether the solutions found are general
enough to be applied to unseen individuals.

Table V shows the results of applying the best weights with
the ‘odd’ and ‘even’ groups on the alternate group. The test
numbers are those of the tests that produced these weightings
in the previous experiments.

The results of these tests show that there are clear differ-
ences in the solutions found for each group. While the results
of applying the best OWA found with the ‘even’ and ‘odd’
groups are relatively good, they are worse than those produced
by the OWA operator discovered using their own data. One
reason for this could be that that the SA algorithm has slightly
overfitted the OWAs to a specific group of people. Finding a
general set of weights that can be applied to unseen data is
an important part of this study, as one of our goals is to be
able to use pre-rated components to rank/rate new attacks on
proposed systems.
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TABLE VIII
EA: TEST SET 1 - BEST RESULTS

Best Weights
Test Mean Sp. MSE 1 2 3 4 5 6 7 8
Even

3 0.6866 0.1425 0.8985 0.0059 0.0311 0.0102 0.0065 0.0258 0.0037 0.0184
Odd

1 0.5713 0.2543 0.7872 0.0185 0.1242 0.0505 0.0111 0.0032 0.0029 0.0024
All

1 0.6159 0.2069 0.9582 0.0028 0.0242 0.0003 0.0057 0.0029 0.0002 0.0056
2 0.6159 0.2069 0.9621 0.0017 0.0221 0.0003 0.0045 0.0059 0.0009 0.0025

TABLE VI
SA: EXTENDED TESTS

Max Sp. Min Sp. Mean Sp. Std. Dev. Sp.
0.6175 0.6076 0.6143 0.0024

Max MSE Min MSE Mean MSE Std. Dev. MSE
0.2157 0.2084 0.2105 0.0019

TABLE VII
EA: TEST SET 1

Test Copy Cross. Mut.
1 0.00 0.20 0.79
2 0.20 0.20 0.59
3 0.40 0.20 0.39
4 0.60 0.20 0.19
5 0.79 0.20 0.00
6 0.50 0.00 0.49
7 0.30 0.40 0.29
8 0.20 0.60 0.19
9 0.10 0.80 0.09

10 0.00 0.99 0.00

2) Extended test: One of the configurations that produced
the best results on the ‘all’ group (Test 12) is replicated thirty
times with differing random seeds to give an idea of the
variation in results, and for comparison with the results of
the EA search. Table VI shows the results of using the best
weights from the ‘all’ group over thirty tests, including the
mean of the Spearman’s Rhos and MSEs and the standard
deviation.

There is little difference in the quality of solutions produced
by SA using the different random seeds, suggesting that the
search is relatively robust. For the fitness measure (MSE) the
different between the largest and the smallest is just 0.0073,
and the standard deviation is a further indicator of stability. For
the Spearman’s Rho values the results are similar, as we might
expect. Looking at the actual weighting produced by each of
the thirty tests, it can be seen that the algorithm consistently
finds solutions that give almost all (≥ 0.92) of the weight to
the most difficult component, again providing corroboration
for our hypothesis.

B. Evolutionary Algorithm

Initially, two separate sets of testing are conducted with
the EA, one focusing on the proportion of each evolutionary
operator, and the other assessing the effect of altering the ratio
of population to generations. Each stage has been conducted
with the ‘odd’, ‘even’ and ‘all’ groups. These tests were

conducted with a random seed of one.
1) Test Set 1 - Evolutionary Operators: Table VII shows the

configurations tested and Table VIII provides the best results
for each group. For each of these tests a population of 250
individuals is used over 250 generations, with 1% elitism.

In comparison to the SA tests, fewer configurations produce
results with the same MSE, also there is more variety in
quality between the best OWAs found in the tests. This may be
because the configurations are more different to one another,
or that the EA is more sensitive to its setup. For all groups,
the earlier tests result in the best solutions, when there is a
small amount of crossover and large proportion of mutation.
The copy operator does not appear to have much influence on
the results, though this may be because the best individuals
from each population are automatically copied to the next
generation through elitism.

TABLE IX
EA: TEST SET 2

Test Gens. Pop.
11 50 1250
12 100 625
13 200 315
14 300 210
15 400 155
16 500 125

2) Test Set 2 - Population and Generations: The best
configuration from the previous set of tests for each group
was used with a variety of generations/population combina-
tions. Table IX provides the configurations tested and Table
X provides the results. In the previous tests on the ‘all’
group two configurations were tied for the lowest MSE. Both
configurations were used in this set of tests, the (best) result
shown in Table X was achieved using the setup from test 2 in
the previous set of tests.

In these tests there is less variation in the results, as
we might expect, altering the configuration has more of an
effect on the results than changing the ratio of populations to
generations. As was seen in the SA tests, all of the solutions
found with the EA have a large bias towards the most difficult
component, with very little weight being attributed to the
remaining components.

3) Alternate Group Weightings: Like the SA tests, the next
stage examines how the best weights for one group perform
on the other. Table XI shows the results of applying the best
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TABLE X
EA: TEST SET 2 - BEST RESULTS

Best Weights
Test Mean Sp. MSE 1 2 3 4 5 6 7 8
Even
12 0.6885 0.1421 0.8907 0.0011 0.0323 0.0120 0.0070 0.0174 0.0035 0.0359
13 0.6866 0.1421 0.8899 0.0044 0.0297 0.0126 0.0078 0.0242 0.0030 0.0284

Odd
13 0.5732 0.2519 0.7858 0.0223 0.1285 0.0471 0.0115 0.0031 0.0015 0.0002
16 0.5733 0.2519 0.7854 0.0246 0.1248 0.0479 0.0117 0.0033 0.0001 0.0021

All
15 0.6165 0.2080 0.9456 0.0022 0.0296 0.0006 0.0068 0.0011 0.0086 0.0055

TABLE XI
EA: APPLICATION OF BEST WEIGHTS TO ALTERNATE GROUP

Weights
Test Mean Sp. MSE 1 2 3 4 5 6 7 8
Best ‘even’ weights applied to ‘odd’
12 0.5228 0.3013 0.8907 0.0011 0.0323 0.0120 0.0070 0.0174 0.0035 0.0359
13 0.5146 0.3118 0.8899 0.0044 0.0297 0.0126 0.0078 0.0242 0.0030 0.0284

Best ‘odd’ weights applied to ‘even’
13 0.5915 0.2381 0.7858 0.0223 0.1285 0.0471 0.0115 0.0031 0.0015 0.0002
16 0.5947 0.2337 0.7854 0.0246 0.1248 0.0479 0.0117 0.0033 0.0001 0.0021

weights from the ‘odd’ and ‘even’ groups on the alternate
group.

Again, a similar pattern to that which was seen in the SA
tests can be seen. While the results are relatively good, they
are not as good as those seen in the previous tests with the
same weights.

4) Extended test: Finally, the best result from the ‘all’
group is replicated thirty times with differing random seeds
to give an idea of the variation in results, and for comparison
with the results of the SA search. Table XII shows the results
of using the best weights from the ‘all’ group over thirty
tests, including the mean Spearman’s Rho, mean MSE and
the standard deviation.

TABLE XII
EA: EXTENDED TESTS

Max Sp. Min Sp. Mean Sp. Std. Dev. Sp.
0.6200 0.6104 0.6150 0.0022

Max MSE Min MSE Mean MSE Std. Dev. MSE
0.2137 0.2057 0.2092 0.0020

The results of the extended test show that the results
are relatively stable. There is little difference between the
maximum and minimum MSE (0.0080), and looking at the
individual sets of weights it can be seen that they are all very
similar. All solutions produced in this extended run of tests
placed a weight greater than 0.92 on the first (most difficult)
component.

VI. DISCUSSION

The outcome of the experiments is that we have shown
that EAs and SA are appropriate methods of tuning OWA
weights for this type of cybersecurity problem. The results also
suggest that our hypothesis regarding the method of decision
making employed by experts, i.e. they look at the most difficult
component of an attack first and then assign lower importance

to the remaining components, is true as both methods found
solutions matching this pattern.

Table XIII shows a more detailed examination of the results
for the best OWA operators found using each method, from EA
test 2 and SA test 12; for comparison the results when rankings
are created using the arithmetic mean of component ratings
are included as a benchmark. The table shows that the search
methods employed produced a comparatively robust search, as
both the MSEs and the standard deviation in the Spearman’s
rhos are lower with the discovered OWA operators than with
the mean. This suggests that while the mean may work well
for some individuals, the OWA operators found using EAs and
SA provide a more stable output when they are applied to a
group of individuals. In practice, this is an important advantage
as clear and consistent advice is key to successful assessments
of proposed information systems.

TABLE XIII
METHOD COMPARISON

SA
Max Sp. Min Sp. Mean Sp. Std. Dev. Sp.
0.9394 0.1515 0.6154 0.2502

Max Error Min Error MSE Std. Dev. Error
0.8485 0.0606 0.2105 0.2502

EA
Max Sp. Min Sp. Mean Sp. Std. Dev. Sp.
0.9394 0.1515 0.6159 0.2436

Max Error Min Error MSE Std. Dev. Error
0.8485 0.0606 0.2068 0.2436

Mean
Max Sp. Min Sp. Mean Sp. Std. Dev. Sp.
0.9636 -0.4182 0.6335 0.3112

Max Error Min Error MSE Std. Dev. Error
1.4182 0.0364 0.2312 0.3112

The difference in performance between the methods is
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Fig. 2. Example plots from the best performing configurations for (a) EA
and (b) SA

minimal, with both methods consistently finding solutions
achieving similar MSEs and standard deviations. It should be
mentioned however that the EA produced these results much
quicker, as it carries out evaluation, and performs evolutionary
operations on many individuals at the same time, whereas the
nature of SA means that it performs these tasks in a serial
manner. For example, one of the EA tests that produced the
best result (test 2, which includes all evolutionary operations)
took approximately 1 hour and 22 minutes to complete on a
laptop equipped with an Intel i3 2.53GHz dual core processor
and 4GB RAM. The test that produced the best result in the
SA tests (test 12) took approximately 2 hours and 41 minutes,
almost twice as long. In both of these tests 625,000 individuals
are evaluated.

Another outcome of the experiments, illustrated in Figure
2 is that the majority of the improvements in solutions found
by the algorithms happen early on in the search, particularly
in the case of SA. It could be decided that the benefit gained
from allowing these to run for many iterations/generations is
not worth the extra processing time. In both cases a result
close to that found by the end of the search can be achieved
in significantly less time.

VII. CONCLUSIONS AND FUTURE WORK

In this research we have shown how an EA and SA can be
used to search for suitable OWA weights for a cyber security
problem. Data collected from thirty nine experienced cyber
security professionals from various sections of the community
(including public and private sectors) has been used to demon-
strate how a tuned OWA can be used to aggregate ratings of
components of attacks to produce overall ratings and rankings
for attacks. These rankings are particularly useful in the real
world when assessing systems in their design stage, as they
provide an overview of the most salient attacks, and can be
used to aid experts in their decision making.

It has been established that both methods offer a robust
search finding solutions that are more consistent than the
arithmetic mean, and that there is little difference in perfor-
mance between an EA and SA in terms of MSE. However,
the EA achieved the results in a much shorter time frame.

Searches could also be completed more quickly by curtailing
the number of generations/iterations performed. Both methods
found solutions close in quality to their final best solutions in
a fraction of the overall run time.

There are a number of avenues of possible further work,
these include:

• Extending the aggregations to include all of the data
provided for the ‘Overall’ question. That is, use the left
and right end points of the intervals, incorporating more
information into the aggregation.

• Taking into account the other questions asked about each
component, these could provide valuable information for
rating components and the attacks they are part of.

• Expanding aggregation to include the opinions of multi-
ple experts on the multiple components for an attack.

• Constructing a database of expert ratings of generic
components for use in rating/ranking unseen attacks on
proposed system designs.
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